2009年4月20日 星期一

新研發「病毒電池」商業化有望

美國麻省理工學院(MIT)的研究人員發明了一種新技術,可利用病毒來組裝尺寸微小的、並可印刷在塑膠薄膜上的電池

該病毒是一種基因工程病毒,專門用來做為自組裝(self-assemble)奈米級鋰離子電池的材料;所產出的電池則是利用環保製程印刷在塑膠薄膜上。MIT的研究人員表示,該種軟性電池薄膜的主要零件已經完成;他們並展示了該種電池媲美現有筆記型電腦、混合動力車輛鋰離子電池的性能。

MIT的研究團隊目前正在對該材料進行最佳化,期望讓其性能超越現有的鋰離子電池;而他們的最終目標是將這種可印刷電池薄膜商業化。

「病毒為電池佈線提供了新途徑;」率領該研究團隊的MIT材料科學家Angela Belcher表示:「現在我們已經開發出正極、負極材料,以及微接觸(micro-contact)印刷方法。」接下來該團隊將最佳化電池的性能,並為了商業化升級技術。

率領MIT印刷電池研究團隊的Angela Belcher
率領MIT印刷電池研究團隊的Angela Belcher

除了提升電池性能,MIT的科學家表示他們將透過使用低價、可印刷組裝技術,創造出現有製程不可能呈現的電池形狀。不過在現場展示中,MIT的研究人員是將該種電池做成傳統的鈕扣形狀來做示範。

不久前,MIT校長Susan Hockfield還在美國白宮一場討論綠色能源科技的會議上,向美國總統歐巴馬展示了該病毒電池的原型;Hockfield表示,這種軟性電池薄膜能使用環保製程技術,在接近室溫下進行製造。

典型的鋰離子電池是使用帶負電的、石墨製成的正極,來調節流向帶正電、用鈷製程的負極;而MIT所研發的電池,正極與負極材料都是自組裝架形成架構,且由於是活病毒組成的奈米級圖案,因此能提供更大的表面積。

這 些病毒是從普通的噬菌體(bacteriophages)族群中所選出來的,會吞噬細菌,但是對人體無害。研究人員以基因工程方式,透過創造出數十億的隨 機變種,讓病毒自組裝成奈米級電池薄膜;接下來他們將利用「適者生存(survival-of-the-fittest)」法則,選擇出那些能發揮最佳所 需性能的病毒。

去年該研究團隊展示了使用病毒自組裝所形成的正極材料,以微接觸印刷技術所製造出的軟性電池薄膜;該次示範是使用傳統的陰極材料。現在基因工程病毒已經可以自組裝成陰極材料,也完成了該種電池商業化所需的最後一種關鍵零件。

「我們已經利用基因工程培育出陰極材料──是由鋰離子磷酸鹽與銀所組成的奈米線;這種材料會拾取(pick up)其頂部的單一碳奈米管,以增加其導電性。」Belcher表示。

在 上一次的展示中,MIT所使用的自組裝正極材料是使用不同的病毒;在該種病毒外部覆蓋了氧化鈷與金,以形成奈米線。而新病毒則是使用了類似的方法,在外部 覆蓋磷酸鹽鐵與銀,然後使用分子辨識(molecular recognition)在其末端拾取奈米管,以達到更有效率的電子傳輸。

「我 們一開始在沒有奈米管的情況下設計該種材料,但其導電性卻不夠好;然後我們發現病毒會藉著分子辨識與奈米管接觸。」Belcher表示:「這也是最困難的 部份,因為在數十億病毒會選擇中只有兩個會拾取頂端的奈米管;這兩個病毒有不同的基因碼,而且是透過適者生存法則所選出的。」

所 產生出的材料(能以液狀大量生產,然後乾燥成粉末狀)是由5%的碳奈米管所組成;在展示中,該種使用微接觸印刷技術所製成的電池,能重複充電數百次且在性 能上幾乎沒有下降。接下來MIT的研究人員希望能進一步提升其以鋰為基礎的材料配方,透過添加金屬到該種磷酸鹽鋰混合物中,提供更佳的性能;例如氧化鎂磷 酸鹽鋰,或是鎳磷酸鹽鋰

沒有留言:

方便性、能量密度、安全性、應用場景等各方面表現都更優異的奈米液流電池最終能打敗鋰電池嗎?

  當莫妮卡開著她的電動車前往母親家時,車上的電池指示器顯示需要重新充電。她在一個充電站停下來,在加油站刷了信用卡,把噴嘴插入車內,並在5分鐘內將400升用過的奈米液體換成新的。在她等待的過程中,一輛油罐車開過來為充電站補充燃料,交換數萬升充滿電的燃料。莫妮卡關上她的電動車的加油...