發表文章

目前顯示的是 四月, 2009的文章

未來2年 八大行動通訊技術將引領市場

據Gartner公司所做調查,截至2010年,有八種主流行動通訊技 術將引領市場。“所有的行動策略均是設立在其技術能不斷革新的基礎上,因此,對於每一種行動策略來說,釐清該技術能否獲得快速發展至關重 要,”Gartner副總裁暨分析師Nick Jones說。“我們認為,在2009到2010年,共有八種行動通訊技術將對市場帶來廣泛影響,而這些技術也可能構成一些有待解決的問題。”藍牙3.0藍牙(Bluetooth) 3.0版預計在今年首次進軍市場,2010年起可望有相關裝置上市。Gartner公司預估,藍牙3.0可能將超低功耗模式包含在內,這將可設計出全新型態的產品,包括各類週邊與感測裝置,甚至開啟新應用,如醫療監控等。行動用戶介面(UI)用 戶介面對電子裝置的可用性影響程度非常大。隨著愈來愈多製造商透過不同的用戶介面進行產品區隔化,Gartner預計2009與2010年,用戶介面領域 的競爭也將日益激烈。業界將出現各種新型態與更多樣化的用戶介面,它們也將支援企業到員工(B2E)與企業到用戶(B2C)應用。定位位址感知功能將使得行動應用更強大、更有用處;Gartner指出,在未來,定位服務將成為行動應用中的一項關鍵內容。定位服務同時還能進一步強化現有的行動系統與行動社交網路。802.11n802.11n 將Wi-Fi的數據傳輸率提高至約100Mbit/s~300Mbit/s之間,加上採用了多輸入多輸出(MIMO)技術,在某些情況下將可提供更好的覆 蓋,Gartner表示。此外,802.11n很可能成為一種長期標準,為未來幾年的Wi-Fi定義性能。顯示技術Gartner預測了幾項將對市場帶來重大影響的新興顯示技術,包括主動畫素顯示、被動顯示與微型顯示等。顯示技術將成為消費選購產品時的主要標準之一。行動網路和工具行 動網路將成為一種可在各種設備上實現行動應用的低成本途徑,然而,Gartner指出,行動網路本身存在的一些侷限性,直到2010年都無法獲得解決。行 動網路為各種精簡型終端應用提供了‘低擁有成本(TCO)’優勢。目前,許多行動瀏覽器均支援多種小型行動網路應用程式(Widget),並提供了將資料 串流饋送至手機與小型螢幕中的簡單方式。Gartner認為,行動網路應用將成為許多B2C策略的一部份。蜂巢式寬頻在 諸如高速下行/上行封包存取等成熟技術的推動下,無線寬頻在20…

纖也能變身太陽能電池

來自日本的研究人員開發出一種「纖維狀無TCO染料敏化太陽電池(fiber-type TCO-less dye sensitized solar cell)」;這種太陽能電池是將染料敏化太陽電池層,環繞著一根長3.5公分(cm)、直徑9公釐(mm)玻璃纖維所組成。該 研究團隊是由日本九州科技大學(Kyushu Institute of Technology,KIT)的生命科學與系統工程研究所教授Shuji Hayase所率領;其研究人員將一層氧化鈦、一層敏化顏料,以及一層多孔鈦(porous Ti)做為電極(正極);一層包含碘等電解質的多孔層,以及一層白金(Pt)與鈦做為另一端電極(陰極)。將上述兩種電極順序環繞著玻璃纖維;而除了該玻璃纖維的兩端,整個太陽能電池都以鈦覆蓋著。將光線從玻璃纖維的一端透進去,光就會被太陽電池中的染料所吸收,並轉換成電力;而若是該纖維稍有傾斜,在光線從另一端出去之前,就不會在表面下的玻璃造成完全反射。目前該種太陽電池所展現的轉換效率,在使用某種染料的情況下僅稍高於1%;該數字稍嫌低了些,且由於該種電池使用的玻璃纖維有9mm直徑,長度卻只有1.5公分左右,因此大約有九成從纖維的一端入射、從另一端出去的光線並沒有被轉換。未來該種太陽能電池的淨轉換率(net conversion efficiency)可望達到10%,被浪費的光線問題能透過增加光纖的長度或是減少纖維直徑來克服。而該種新型太陽能電池與標準染料敏化電池的一個最大差異,是新電池並不使用透明電極(透明導電氧化物薄膜TCO);研究人員計畫利用尚未被現有染料敏化電池所使用的近紅外線(near-infrared)能源,來產生電力。

新研發「病毒電池」商業化有望

圖片
美國麻省理工學院(MIT)的研究人員發明了一種新技術,可利用病毒來組裝尺寸微小的、並可印刷在塑膠薄膜上的電池。該病毒是一種基因工程病毒,專門用來做為自組裝(self-assemble)奈米級鋰離子電池的材料;所產出的電池則是利用環保製程印刷在塑膠薄膜上。MIT的研究人員表示,該種軟性電池薄膜的主要零件已經完成;他們並展示了該種電池媲美現有筆記型電腦、混合動力車輛鋰離子電池的性能。MIT的研究團隊目前正在對該材料進行最佳化,期望讓其性能超越現有的鋰離子電池;而他們的最終目標是將這種可印刷電池薄膜商業化。「病毒為電池佈線提供了新途徑;」率領該研究團隊的MIT材料科學家Angela Belcher表示:「現在我們已經開發出正極、負極材料,以及微接觸(micro-contact)印刷方法。」接下來該團隊將最佳化電池的性能,並為了商業化升級技術。
率領MIT印刷電池研究團隊的Angela Belcher 除了提升電池性能,MIT的科學家表示他們將透過使用低價、可印刷組裝技術,創造出現有製程不可能呈現的電池形狀。不過在現場展示中,MIT的研究人員是將該種電池做成傳統的鈕扣形狀來做示範。不久前,MIT校長Susan Hockfield還在美國白宮一場討論綠色能源科技的會議上,向美國總統歐巴馬展示了該病毒電池的原型;Hockfield表示,這種軟性電池薄膜能使用環保製程技術,在接近室溫下進行製造。典型的鋰離子電池是使用帶負電的、石墨製成的正極,來調節流向帶正電、用鈷製程的負極;而MIT所研發的電池,正極與負極材料都是自組裝架形成架構,且由於是活病毒組成的奈米級圖案,因此能提供更大的表面積。這 些病毒是從普通的噬菌體(bacteriophages)族群中所選出來的,會吞噬細菌,但是對人體無害。研究人員以基因工程方式,透過創造出數十億的隨 機變種,讓病毒自組裝成奈米級電池薄膜;接下來他們將利用「適者生存(survival-of-the-fittest)」法則,選擇出那些能發揮最佳所 需性能的病毒。去年該研究團隊展示了使用病毒自組裝所形成的正極材料,以微接觸印刷技術所製造出的軟性電池薄膜;該次示範是使用傳統的陰極材料。現在基因工程病毒已經可以自組裝成陰極材料,也完成了該種電池商業化所需的最後一種關鍵零件。「我們已經利用基因工程培育出陰極材料──是由鋰離子磷酸鹽與銀所組成的奈米線;這種材料…